Elevated Gene Copy Number Does Not Always Explain Elevated Amylase Activities in Fishes.
نویسندگان
چکیده
Amylase activity variation in the guts of several model organisms appears to be explained by amylase gene copy number variation. We tested the hypothesis that amylase gene copy number is always elevated in animals with high amylolytic activity. We therefore sequenced the amylase genes and examined amylase gene copy number in prickleback fishes (family Stichaeidae) with different diets including two species of convergently evolved herbivores with the elevated amylase activity phenotype. We found elevated amylase gene copy number (six haploid copies) with sequence variation among copies in one herbivore (Cebidichthys violaceus) and modest gene copy number (two to three haploid copies) with little sequence variation in the remaining taxa, which included herbivores, omnivores, and a carnivore. Few functional differences in amylase biochemistry were observed, and previous investigations showed similar digestibility among the convergently evolved herbivores with differing amylase genetics. Hence, the phenotype of elevated amylase activity can be achieved by different mechanisms (i.e., elevated expression of fewer genes, increased gene copy number, or expression of more efficient amylase proteins) with similar results. Phylogenetic and comparative genomic analyses of available fish amylase genes show mostly lineage-specific duplication events leading to gene copy number variation, although a whole-genome duplication event or chromosomal translocation may have produced multiple amylase copies in the Ostariophysi, again showing multiple routes to the same result.
منابع مشابه
Interstrain variation in amylase gene copy number and mRNA abundance in three mouse tissues.
Amylase expression in strain YBR differs in several respects from the standard mouse phenotype. The synthesis of salivary amylase is elevated twofold in YBR mice and the synthesis of pancreatic amylase is reduced to one-half the normal rate. We have compared the concentrations of amylase mRNA in the parotid, liver and pancreas of YBR mice with those in strains A/J and C3H. We observed differenc...
متن کاملKluyveromyces lactis gene KlBIM1 in high copy state suppresses heterologous protein secretion
2 Vilnius University, Department of Botany and Genetics, Vilnius, Lithuania The aim of this work was to investigate the genes that under over-expression in the yeast Kluyveromyces lactis decrease the yield of secretory proteins. The MD2/1-9 mutant strain with an enhanced ability to secrete different proteins was used. The genes suppressing the protein secretion process were detected by using th...
متن کاملEffects of Pre-clinical Administration of Marshmallow Extract (Althaea officinalis L.) on Certain Hepatopancreatic Enzymes in Common Carp (Cyprinus carpio)
This study evaluates the influence of marshmallow extract administration (Althaea officinalis L.) at 0.0 (control), 2.5, 5, and 10 g on the activity of certain hepatopancreatic enzymes such as α-amylase, lipase and trypsin in common carp (Cyprinus carpio) during 60 days. Feeding the fish with diets enriched with marshmallow extract had no effects on the satiety index and hepatic index in these ...
متن کاملDigestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects.
We measured the activities of eight digestive enzymes in four species of herbivorous and carnivorous prickleback fishes and determined the effects of ontogeny, diet, and phylogeny on these enzyme activities. Of the four species, Cebidichthys violaceus and Xiphister mucosus shift to a more herbivorous diet as they grow (> or =45 mm SL [standard length]), whereas Xiphister atropurpureus and Anopl...
متن کاملMolecular evolution of Na+ channels in teleost fishes.
Voltage-dependent sodium channels are critical for electrical excitability. Invertebrates possess a single sodium channel gene; two rounds of genome duplication early in vertebrates increased the number to four. Since the teleost-tetrapod split, independent gene duplications in each lineage have further increased the number of sodium channel genes to 10 in tetrapods and 8 in teleosts. Here we r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological and biochemical zoology : PBZ
دوره 89 4 شماره
صفحات -
تاریخ انتشار 2016